二次函数教学设计
作为一无名无私奉献的教育工作者,就不得不需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的二次函数教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
二次函数教学设计1一、教学目标:
1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3。能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:
教学重点:
1。体会方程与函数之间的联系。
2。能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1。探索方程与函数之间关系的过程。
2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
[活动1] 检查预习 引出课题
预习作业:
1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x ……此处隐藏12823个字……题
求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。
变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.
【设计意图】
通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。
规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。
(四)知识小结
本节课研究了二次函数的三类最值问题:
(1) 定轴定区间最值问题; (2) 动轴定区间最值问题; (3) 定轴动区间最值问题.
核心思想是判断对称轴与区间的相对位置, 应用数形结合、分类讨论思想求出最值。
【设计意图】
归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。
(五)结束语
数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!
(六)课后作业
1.二次函数最值教学设计1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。
2. 求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。
3. 求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。
【设计意图】
学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。